Search results for "spectral entropy"

showing 6 items of 6 documents

Spectral entropy based neuronal network synchronization analysis based on microelectrode array measurements

2016

Synchrony and asynchrony are essential aspects of the functioning of interconnected neuronal cells and networks. New information on neuronal synchronization can be expected to aid in understanding these systems. Synchronization provides insight in the functional connectivity and the spatial distribution of the information processing in the networks. Synchronization is generally studied with time domain analysis of neuronal events, or using direct frequency spectrum analysis, e.g., in specific frequency bands. However, these methods have their pitfalls. Thus, we have previously proposed a method to analyze temporal changes in the complexity of the frequency of signals originating from differ…

0301 basic medicineComputer scienceNeuroscience (miscellaneous)ta3112Radio spectrumSynchronizationlcsh:RC321-571Correlation03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineBiological neural networkMethodsTime domainlcsh:Neurosciences. Biological psychiatry. NeuropsychiatrySimulationEvent (probability theory)rat cortical cellsMEAmicroelectrode array213 Electronic automation and communications engineering electronicsspectral entropyInformation processingCorrectiondeveloping neuronal networksMultielectrode array217 Medical engineering030104 developmental biologycorrelationmouse cortical cellsBiological systemsynchronization030217 neurology & neurosurgeryNeuroscienceFrontiers in Computational Neuroscience
researchProduct

Machinery Failure Approach and Spectral Analysis to Study the Reaction Time Dynamics over Consecutive Visual Stimuli: An Entropy-Based Model.

2020

[EN] The reaction times of individuals over consecutive visual stimuli have been studied using an entropy-based model and a failure machinery approach. The used tools include the fast Fourier transform and a spectral entropy analysis. The results indicate that the reaction times produced by the independently responding individuals to visual stimuli appear to be correlated. The spectral analysis and the entropy of the spectrum yield that there are features of similarity in the response times of each participant and among them. Furthermore, the analysis of the mistakes made by the participants during the reaction time experiments concluded that they follow a behavior which is consistent with …

Visual stimuliMean time between failuresVisual perceptionComputer scienceGeneral MathematicsFast Fourier transform050109 social psychologySpectral analysisPercepció visual03 medical and health sciences0302 clinical medicineFast Fourier transformComputer Science (miscellaneous)0501 psychology and cognitive sciencesSpectral analysisEngineering (miscellaneous)Reaction timebusiness.industrylcsh:MathematicsSpectral entropy05 social sciencesPattern recognitionMTBF modelTempslcsh:QA1-939Time dynamicsFISICA APLICADAArtificial intelligencebusinessMATEMATICA APLICADA030217 neurology & neurosurgery
researchProduct

Spectral entropy based neuronal network synchronization analysis based on microelectrode array measurements

2016

Synchrony and asynchrony are essential aspects of the functioning of interconnected neuronal cells and networks. New information on neuronal synchronization can be expected to aid in understanding these systems. Synchronization provides insight in the functional connectivity and the spatial distribution of the information processing in the networks. Synchronization is generally studied with time domain analysis of neuronal events, or using direct frequency spectrum analysis, e.g., in specific frequency bands. However, these methods have their pitfalls. Thus, we have previously proposed a method to analyze temporal changes in the complexity of the frequency of signals originating from differ…

rat cortical cellsMEAmicroelectrode arrayspectral entropydeveloping neuronal networksmouse cortical cellssynchronizationkorrelaatio
researchProduct

Corrigendum: Spectral Entropy Based Neuronal Network Synchronization Analysis Based on Microelectrode Array Measurements

2020

Physicsrat cortical cellsSpectral entropyspectral entropyNeuroscience (miscellaneous)developing neuronal networksMultielectrode arraylcsh:RC321-571Cellular and Molecular NeurosciencecorrelationSynchronization (computer science)Biological neural networkmouse cortical cellsBiological systemsynchronizationlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryFrontiers in Computational Neuroscience
researchProduct

Neural net classification of REM sleep based on spectral measures as compared to nonlinear measures

2001

In various studies the implementation of nonlinear and nonconventional measures has significantly improved EEG (electroencephalogram) analyses as compared to using conventional parameters alone. A neural network algorithm well approved in our laboratory for the automatic recognition of rapid eye movement (REM) sleep was investigated in this regard. Originally based on a broad range of spectral power inputs, we additionally supplied the nonlinear measures of the largest Lyapunov exponent and correlation dimension as well as the nonconventional stochastic measures of spectral entropy and entropy of amplitudes. No improvement in the detection of REM sleep could be achieved by the inclusion of …

AdultMaleCorrelation dimensionGeneral Computer ScienceEntropySleep REMLyapunov exponentElectroencephalographysymbols.namesakeStatisticsmedicineHumansEntropy (information theory)MathematicsQuantitative Biology::Neurons and Cognitionmedicine.diagnostic_testArtificial neural networkbusiness.industrySpectral entropyEye movementElectroencephalographyPattern recognitionNonlinear systemNonlinear DynamicssymbolsNeural Networks ComputerArtificial intelligencebusinessAlgorithmsBiotechnologyBiological Cybernetics
researchProduct

Analyzing the feasibility of time correlated spectral entropy for the assessment of neuronal synchrony

2016

In this paper, we study neuronal network analysis based on microelectrode measurements. We search for potential relations between time correlated changes in spectral distributions and synchrony for neuronal network activity. Spectral distribution is quantified by spectral entropy as a measure of uniformity/complexity and this measure is calculated as a function of time for the recorded neuronal signals, i.e., time variant spectral entropy. Time variant correlations in the spectral distributions between different parts of a neuronal network, i.e., of concurrent measurements via different microelectrodes, are calculated to express the relation with a single scalar. We demonstrate these relati…

0301 basic medicineSpectral power distributionhippocampusta3112Correlation03 medical and health sciences0302 clinical medicineStatisticsBiological neural networkAnimalsEntropy (information theory)Neuronal synchronyAnalysis methodMathematicsta217Quantitative Biology::Neurons and Cognitionta213Spectral entropybiological neural networkselectrodesrats030104 developmental biologycorrelationBiological systementropyprobesMicroelectrodes030217 neurology & neurosurgery
researchProduct